涡轮流量计测量结果不确定度分析
产品简介:
摘要:涡轮流量计属于速度式流量计的一种,根据其示值误差计算方式可分为A类涡轮流量计和B类涡轮流量计,使用仪表K系数计算示值误差的为A类,使用累积流量计算示值误差的为B类。针对这两类涡轮流量计的测量结果分别有不同的不确定度分析方法。涡轮流量计测量结果的不确定度分析于速度式流量计的一种,其工作原理为:流动流体的动力驱使涡轮叶片旋转,其旋转速度与体积流量近似成比例,通过流量计的流体体积示值是以涡轮叶轮转数为基准的。涡轮流量计根据其示值误差计算方式可分为A类涡轮流量计和B类涡轮流量计:使用仪表K系数计算示值误差的为A类,使用累积流量计算示值误差的为B类。
Kij为第i检定点第j次检定的仪表系数,(m3) -1或 L -1;Nij为第i检定点第j次检定时标准装置测得的被检流量计输出的脉冲数;Vij为第i检定点第j次检定时标准装置测得的累积体积流量,m3或L;i 为1,2,…,m,m为检定点数,m≥3;j 为1,2,…,n,n为检定次数,n≥3。
Ki为检定点平均仪表系数,1/m3或1/L;n为每个流量检定点的检定次数。
式中:ur(Vij)为Vij的相对标准不确定度;ur(Nij)为Nij的相对标准不确定度;ur(Kij)为Kij的相对标准不确定度。1.2.1ur(Kij)ur(Vij)的大多数来自是标准装置,标准装置证书上给出其扩展不确定度Urel(包含因子),故
1.2.2ur(Nij)ur(Nij)的大多数来自是脉冲测量,标准装置测量脉冲数 Ni的最大允许误差为±1个脉冲,按均匀分布考虑,故
1.2.3? ur(Kij)??? ur(Kij)的大多数来自是测量重复性,用A类方法评定(贝塞尔公式计算),故
1.2.3计算实例??? 以一台涡轮流量计为例,在临界流文丘里喷嘴法气体流量标准装置上进行检定,检定4个流量点,每个流量点检定6次,具体检定数据见表1。(1) ur(Vij)??? 由校准证书知该临界流文丘里喷嘴法气体流量标准装置扩展不确定度为Urel=0.32%,k=2,故=0.32%/2=0.16%(2)
不确定度分析见表2。2? B类涡轮流量计2.1 数学模型???(1)表1涡轮流量计检定记录及计算
Eij为第i检定点第j次检定被检流量计的相对示值误差,%;Vij为第i检定点第j次检定时被检流量计显示的累积流量值,m3;(Vs)ij为第i检定点第j次检定时标准装置换算到流量计处状态的累积流量值,m3。
第i检定点被检流量计的相对示值误差。2.2不确定度分析由以上数学模型可知被检流量计相对示值误差 Ei的不确定度为
式中:ur((Vs)ij)为(Vs)ij的相对标准不确定度;ur(Eij)为Ei的相对标准不确定度。2.2.1ur((Vs)ij)ur((Vs)ij)的大多数来自是标准装置,标准装置证书上给出其扩展不确定度Urel(包含因子),故
Eij为第i检定点第j次检定被检流量计的相对示值误差,%;Vij为第i检定点第j次检定时被检流量计显示的累积流量值,m3;(Vs)ij为第i检定点第j次检定时标准装置换算到流量计处状态的累积流量值,m3。
第i检定点被检流量计的相对示值误差。2.2? 不确定度分析??? 由以上数学模型可知被检流量计相对示值误差 Ei的不确定度为
式中:ur((Vs)ij)为(Vs)ij的相对标准不确定度;ur(Eij)为Ei的相对标准不确定度。2.2.1ur((Vs)ij)?? ur((Vs)ij)的大多数来自是标准装置,标准装置证书上给出其扩展不确定度Urel(包含因子),故3.2.2ur(Eij)ur(Eij)的大多数来自是测量重复性,用A类方法评定(贝塞尔公式计算),故
3.2.2计算实例以一台涡轮流量计为例,在临界流文丘里喷嘴法气体流量标准装置上进行检定,检定4个流量点,每个流量点检定3次,具体检定数据见表3。(1) ur((Vs)ij)由校准证书知该临界流文丘里喷嘴法气体流量标准装置扩展不确定度为Urel=0.32%,k=2,故
4 结语A类涡轮流量计的测量围绕其仪表系数进行,B类涡轮流量计的测量围绕其测得的累积流量进行。故A类涡轮流量计测量结果不确定度的大多数来自是标准装置、脉冲测量和K系数重复性;B类涡轮流量计测量结果不确定度的大多数来自是标准装置和示值误差重复性。